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The merit factor of binary sequence families
constructed from m-sequences

Jonathan Jedwab and Kai-Uwe Schmidt

Abstract. We consider the asymptotic merit factor of two binary sequence
families obtained from an initial binary sequence family using a “negaperiodic”
and a “periodic” construction. When the initial sequences are m-sequences,
both of the constructed families have the same asymptotic merit factor as the
initial family, at all rotations of sequence elements. A similar property was
previously shown to hold when the initial sequences are Legendre sequences.
However we show by example that this property appears to fail for a general
initial sequence family.

1. Introduction

We consider a sequence A of length n to be an n-tuple (a0, a1, . . . , an−1) of real
numbers. The aperiodic autocorrelation of A at shift u is

CA(u) :=






n−u−1∑
j=0

ajaj+u for 0 ≤ u < n

CA(−u) for −n < u < 0,

and its energy E(A) is CA(0). Provided that
∑

0<|u|<n[CA(u)]2 > 0, the merit
factor of A is defined to be

F (A) :=
[E(A)]2∑

0<|u|<n

[CA(u)]2
.

The sequence A = (a0, a1, . . . , an−1) of length n is called binary if each aj takes
the value +1 or −1, in which case E(A) = n. Our objective is to understand the
behaviour, as n −→ ∞, of the optimal value of the merit factor F (A) as A ranges
over the set of all 2n binary sequences of length n.
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The merit factor is important both practically and theoretically. The larger
the merit factor of a binary sequence that is used to transmit information by mod-
ulating a carrier signal, the more uniformly the signal energy is distributed over
the frequency range; this is particularly important in spread-spectrum communi-
cation [BCH85]. The optimal value of the merit factor of a binary sequence is
studied in complex analysis, in statistical mechanics, and in theoretical physics and
theoretical chemistry (see [Jed05] for a survey of the merit factor problem, and
[Jed08] for a survey of related problems).

The only non-trivial infinite families of binary sequences for which the asymp-
totic value of the merit factor is known are: Legendre sequences and some gen-
eralisations, including Jacobi and modified Jacobi sequences; m-sequences; and
Rudin-Shapiro sequences and some generalisations. The largest proven asymptotic
merit factor of a binary sequence family is 6, which is attained by rotated Legendre
sequences (see Theorem 5). Furthermore, there is numerical evidence, although not
yet a proof, that a merit factor value greater than 6.34 can be consistently attained
for long binary sequences [BCJ04].

In this paper, we study two product constructions that were previously analysed
in [SJP09]. A first, “negaperiodic”, construction inputs a length n binary sequence
and outputs a length 2n binary sequence. A second, “periodic”, construction inputs
a length n binary sequence and outputs a length 4n binary sequence. We find
in both the negaperiodic and the periodic case that the asymptotic merit factor
of the output sequence family is the same as that of the input sequence family,
at all rotations of sequence elements, when the input sequences are m-sequences.
The same property was previously shown to hold (up to rotation of both output
sequences by the same amount) when the input sequences are Legendre sequences.
However we show by example that this property appears to fail for general input
binary sequences.

2. Definitions and Notation

In this section we introduce further definitions and notation for the paper.
Let A = (a0, a1, . . . , an−1) and B = (b0, b1, . . . , bn−1) be sequences of equal

length n. The aperiodic crosscorrelation between A and B at shift u is

CA,B(u) :=






n−u−1∑
j=0

ajbj+u for 0 ≤ u < n

CB,A(−u) for −n < u < 0.

The aperiodic autocorrelation CA(u) defined in Section 1 equals CA,A(u) for |u| < n.
From the definition of CA(u) and F (A) we have the relation

(2.1)
1

F (A)
= −1 +

1
[E(A)]2

∑

|u|<n

[CA(u)]2

for the reciprocal merit factor 1/F (A).
Given a sequence A = (a0, a1, . . . , an−1) of length n, we regard any expression

for the sequence subscript to be reduced modulo n, so that ai+n = ai for all i; we
write [A]j to denote the sequence element aj . Let A = (a0, a1, . . . , an−1) and B =
(b0, b1, . . . , bm−1) be sequences of length n and m, respectively. The concatenation
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A; B of A and B is the length n + m sequence given by

[A; B]j :=

{
aj for 0 ≤ j < n

bj−n for n ≤ j < n + m.

Provided gcd(m, n) = 1, the product sequence A ⊗ B of length mn is defined by

[A ⊗ B]j := ajbj for 0 ≤ j < mn.

Provided gcd(d, n) = 1, the d-decimation of A is the length n sequence C defined
by

[C]j := adj for 0 ≤ j < n.
The periodic rotation Ar of A by a fraction r of its length (for any real r) is the
length n sequence given by

[Ar]j := aj+"nr# for 0 ≤ j < n,

and the negaperiodic rotation Aer of A by the fraction r is the length n sequence
given by

[Aer]j :=

{
aj+"nr# for 0 ≤ j < n − &nr'

−aj+"nr# for n − &nr' ≤ j < n.

The sequence Aer can be viewed as the first n elements of the length 2n sequence
(A;−A) r

2
. For example, take r = 2

7 and A = (+, +, +,−, +,−,−), where + and −
represent sequence elements +1 and −1, respectively. Then we have

Ar = (+,−, +,−,−, +, +),
Aer = (+,−, +,−,−,−,−),

(A;−A) r
2

= (+,−, +,−,−,−,−,−, +,−, +, +, +, +).

Given a sequence A = (a0, a1, . . . , an−1) of length n, the z-transform of A is
the function QA : C → C given by

(2.2) QA(z) :=
n−1∑

j=0

ajz
j .

3. m-sequences

This section provides background and some required results on m-sequences.
Let GF(2m) be the finite field containing 2m elements, and let tr : GF(2m) →

GF(2) be the absolute trace function on GF(2m) given by tr(z) :=
∑m−1

j=0 z2j
. An

m-sequence X = (x0, x1, . . . , xn−1) of length n = 2m − 1 is defined by

(3.1) xj := (−1)tr(βαj) for 0 ≤ j < n

for some primitive element α of GF(2m) and some nonzero element β of GF(2m).
We shall require the following properties of m-sequences (see [GG05] for a

detailed modern treatment; these properties were originally derived using an alter-
native definition of m-sequences involving a linear recurrence relation [Gol67]).

Lemma 1. Let X = (x0, x1, . . . , xn−1) be an m-sequence of length n = 2m − 1,
as in (3.1).

(i) The rotated sequence Xr is an m-sequence for every real r.
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(ii) ([Gol67, p. 78]) Provided that gcd(d, n) = 1, the d-decimation of X is an
m-sequence.

(iii) ([Gol67, Thm. 4.3]) There is a permutation π of {1, 2, . . . , n−1}, determined
by the primitive element α in (3.1), for which

xjxj+u = xj+π(u) for all u ∈ {1, 2, . . . , n − 1} and for all j.(3.2)

(iv) ([Gol67, p. 86]) Let εj := e2π
√
−1j/n for integer j. The z-transform of X

satisfies

|QX(εj)|2 =

{
1 for j ≡ 0 (mod n)
n + 1 otherwise.

The asymptotic merit factor of an m-sequence was calculated as 3 by Jensen
and Høholdt in 1989, which by Lemma 1 (i) implies:

Theorem 2 ([JH89]). Let X be an m-sequence of length n = 2m − 1 and let
r be a real number. Then

lim
n−→∞

F (Xr) = 3.

4. The Negaperiodic and Periodic Construction

In this section we describe the negaperiodic and periodic constructions, out-
lining how they will be applied to m-sequences and summarising their previous
application to Legendre sequences.

Let X be a sequence of odd length n. The negaperiodic construction applied
to X outputs the length 2n sequence N(X), where

N(X);−N(X) := X ⊗ (+, +,−,−).

The periodic construction applied to X outputs the length 4n sequence

P (X) := X ⊗ (+, +, +,−).

The following result gives an expression from which we can calculate the merit
factor of N(X) at negaperiodic rotations:

Lemma 3 ([SJP09, Lemma 4]). Let X be a sequence of odd length n, each of
whose elements is bounded in magnitude by a constant independent of n, and let
Z be the 2-decimation of X. Let r be a real number, and write ρ := &nr'/n and
δ := n+1

2n . Then, as n −→ ∞,
∑

|u|<2n

[C(N(X))eρ(u)]2

=
∑

|u|<n

(
[CZr (u) + CZr+δ (u)]2 + [CZr ,Zr+δ(u) − CZr+δ,Zr+2δ (u) + O(1)]2

)
.

Similarly, the following result gives an expression from which we can calculate the
merit factor of P (X) at periodic rotations:

Lemma 4 ([SJP09, Lemma 7]). Let X be a sequence of odd length n, each of
whose elements is bounded in magnitude by a constant independent of n, and let Z
be the 4-decimation of X. Let r be a real number, and write ρ := &nr'/n and

δ :=

{
3n+1
4n for n ≡ 1 (mod 4)

n+1
4n for n ≡ 3 (mod 4).
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Then, as n −→ ∞,

∑

|u|<4n

[
C(P (X))ρ

(u)
]2 =

3∑

k=0

∑

|u|<n

(
3∑

i=0

(−1)
ik(i+k+2)

2 CZr+iδ ,Zr+(i+k)δ (u) + O(1)

)2

.

We will consider the sequences N(X) and P (X) in the case that X is an m-
sequence. By Lemma 1 (ii), the asymptotic form of the expressions in Lemmas 3
and 4 involving the decimated sequence Z can then be determined, provided we
can evaluate the asymptotic form of

∑
|u|<n CX,Xs(u)CXt,Xs+t(u) for suitable real

s and t; this evaluation will be carried out in Section 5.
A Legendre sequence X = (x0, x1, . . . , xn−1) of prime length n is defined for

0 ≤ j < n by

xj :=

{
1 for j a square modulo n

−1 otherwise.

The asymptotic merit factor of a Legendre sequence was calculated for all periodic
rotations by Høholdt and Jensen in 1988:

Theorem 5 ([HJ88]). Let X be a Legendre sequence of prime length n > 2,
and let r be a real number satisfying |r| ≤ 1

2 . Then

1
lim

n−→∞
F (Xr)

= 1
6 + 8

(
|r| − 1

4

)2
.

Lemmas 3 and 4 were previously used to obtain asymptotic merit factor results for
N(X) and P (X) in the case that X is a Legendre sequence:

Theorem 6 ([SJP09, Theorems 5 and 8]). Let X be a Legendre sequence of
prime length n > 2, and let r be a real number satisfying |r| ≤ 1

2 . Then

1
lim

n−→∞
F ((N(X))er)

=
1

lim
n−→∞

F ((P (X))r)
=

{
1
6 + 8r2 for |r| ≤ 1

4
1
6 + 8(|r| − 1

2 )2 for 1
4 ≤ |r| ≤ 1

2 .

The results of Theorems 5 and 6 are displayed in Figure 1, for r taking values
in the range [0, 1) (noting that any sequence A satisfies Ar+1 = Ar for all r).
The left graph shows how the asymptotic merit factor of a Legendre sequence X
varies with periodic rotation r. The right graph shows how the asymptotic merit
factor of N(X) varies with negaperiodic rotation r; the same graph also shows
how the asymptotic merit factor of P (X) varies with periodic rotation r. Each of
the functions represented in the right graph is simply a translation of the function
represented in the left graph.

5. Asymptotic Cross-Correlation Expression for m-Sequences

In this section we find the asymptotic value of
∑

|u|<n CX,Xs(u)CXt,Xs+t(u)
for real s, t and an m-sequence X of length n, in readiness for the calculation in
Section 6 of the asymptotic form of the expressions in Lemmas 3 and 4.

Write

εj := e2π
√
−1j/n for integer j.
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Figure 1. Variation of asymptotic merit factor of a Legendre se-
quence with rotation, before (left graph) and after (right graph)
application of the negaperiodic/periodic construction.

Given a sequence A = (a0, a1, . . . , an−1) of length n, let

ΛA(j, k, ') :=
n−1∑

a=0

QA(εa)QA(εa+j)QA(εa+k)QA(εa+$) for integer j, k, ',(5.1)

using the definition (2.2) of the function QA. The following result generalises the
method of Høholdt and Jensen [HJ88] for calculating the reciprocal merit factor of
an arbitrary sequence of odd length n as the sum of expressions involving complex
nth roots of unity:

Lemma 7 ([SJP09, Lemma 10]). Let X be a sequence of odd length n. Let S
and T be integers, and write s := S/n and t := T/n. Then

(5.2)
1
n2

∑

|u|<n

CX,Xs(u)CXt,Xs+t(u) =
2n2 + 1

3n5
ΛX(0, 0, 0)+B+C1+C2+D1+D2,

where

B =
1
n5

n−1∑

k=1

[(
εT
k + εS

k

)
ΛX(0, 0, k) +

(
ε−(S+T−1)
k + εk

)
ΛX(0, 0, k)

]
· 1 + εk

(1 − εk)2
,

C1 = − 2
n5

∑

1≤k,#<n
k "=#

(
ε−(S+T−1)
k + εk

)(
εT
$ + εS

$

)

(1 − εk)(1 − ε$)
ΛX(0, k, '),

C2 = − 2
n5

∑

1≤k,#<n
k "=#

εS
k εT

$ ΛX(k, 0, ') + ε−(S+T−1)
k ε$ ΛX(k, 0, ')

(1 − εk)(1 − ε$)
,

D1 =
4
n5

n−1∑

k=1

εS
k + εT

k

|1 − εk|2
ΛX(0, k, k),

D2 =
4
n5

n−1∑

k=1

εS+T−1
k

|1 − εk|2
ΛX(k, 0, k).

We wish to apply Lemma 7 to an m-sequence X . The following lemma bounds
the magnitude of some of the terms that will result.
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Lemma 8. Let X be an m-sequence of length n = 2m − 1. Then

|ΛX(0, k, ')| ≤ n(n + 1) for 0 ≤ k, ' < n, where k *= ',(5.3)

|ΛX(k, 0, ')| ≤ n(n + 1)
3
2 for 1 ≤ k, ' < n.(5.4)

Proof. Let α be the primitive element of GF(2m) appearing in the defini-
tion (3.1) of the m-sequence X = (x0, x1, . . . , xn−1), and let π be the permuta-
tion determined by α satisfying (3.2). Then by the definition (2.2) we have, for
0 ≤ k < n,

QX(εa)QX(εa+k) =
n−1∑

m=0

n−1∑

j=0

xmxjε
m
a ε−j

a+k

=
n−1∑

u=0

n−1∑

j=0

xj+uxjε
u
aε−j

k ,

by writing u := (m− j) mod n. The u = 0 summand of this expression is zero, and
then by (3.2) we get, for 0 ≤ k < n,

QX(εa)QX(εa+k) =
n−1∑

u=1

n−1∑

j=0

xj+π(u)ε
−(j+π(u))
k επ(u)

k εu
a

= QX(εk)
n−1∑

u=1

επ(u)
k εu

a .(5.5)

It follows from the definition (5.1) that, for 0 ≤ k, ' < n and k *= ',

ΛX(0, k, ') =
n−1∑

a=0

(
QX(εa)QX(εa+$)

)(
QX(εa)QX(εa+k)

)

= QX(ε$)QX(εk)
n−1∑

u=1

n−1∑

v=1

επ(u)
$ ε−π(v)

k

n−1∑

a=0

εu−v
a

= n QX(ε$)QX(εk)
n−1∑

u=1

επ(u)
$−k

= −n QX(ε$)QX(εk)επ(0)
$−k ,

which implies (5.3) using Lemma 1 (iv).
We can similarly use (5.5) to show that, for 1 ≤ k, ' < n,

ΛX(k, 0, ') =
n−1∑

a=0

(
QX(εa)QX(εa+k)

)(
QX(εa)QX(εa+$)

)

= QX(εk)QX(ε$)
n−1∑

u=1

n−1∑

v=1

επ(u)
k επ(v)

$

n−1∑

a=0

εu+v
a

= n QX(εk)QX(ε$)
n−1∑

u=1

επ(u)
k επ(n−u)

$ .
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This implies (5.4), by using Lemma 1 (iv) together with the inequality
∣∣∣∣∣

n−1∑

u=1

επ(u)
k επ(n−u)

$

∣∣∣∣∣ ≤ (n + 1)
1
2 for 1 ≤ k, ' < n

(see [JJH91, Lemma 3.5], for example). !

We now apply Lemma 7 to an m-sequence X in order to evaluate the desired
asymptotic form.

Theorem 9. Let X be an m-sequence of length n = 2m − 1, and let s and t
be real numbers satisfying |s| < 1 and |t| < 1. Let {s(n)} and {t(n)} be sets of
real numbers such that ns(n) and nt(n) are integers for each n, and such that, as
n −→ ∞, s(n) = s + O(n−1) and t(n) = t + O(n−1). Then, as n −→ ∞,

1
n2

∑

|u|<n

CX,Xs(n)(u)CXt(n),Xs(n)+t(n)(u)

= 1
3 + 2

(
|s| − 1

2

)2 + 2
(
|t| − 1

2

)2 + O
(
n− 1

2 (log n)2
)

.

Proof. Apply Lemma 7 to X , setting S := ns(n) and T := nt(n). Since S
and T are integers for each n by assumption, the left hand side of (5.2) becomes

1
n2

∑

|u|<n

CX, Xs(n)(u)CXt(n), Xs(n)+t(n)(u).

We now prove the result by finding the asymptotic form of the right hand side of
(5.2) as n −→ ∞, evaluating the term involving ΛX(0, 0, 0) and the sum D1, and
bounding the sums B, C1, C2, and D2.

The term involving ΛX(0, 0, 0). From (5.1) and Lemma 1 (iv) we have

2n2 + 1
3n5

ΛX(0, 0, 0) =
2n2 + 1

3n5
(1 + (n − 1)(n + 1)2)

=
2
3

+ O(n−1) as n −→ ∞.(5.6)

The sum D1. From (5.1) and Lemma 1 (iv), for 1 ≤ k < n we have

ΛX(0, k, k) = 2(n + 1) + (n − 2)(n + 1)2

= n3
(
1 + O(n−1)

)
as n −→ ∞.(5.7)

We wish to apply the identity

(5.8)
n−1∑

k=1

εj
k

|1 − εk|2
=

n2

2

(
|j|
n

− 1
2

)2

− n2 + 2
24

for integer j satisfying |j| ≤ n

(see, [JJH91, p. 621], for example). By the definition of S and T and the
assumptions s(n) = s + O(n−1) and t(n) = t + O(n−1), as n −→ ∞ we
have

(5.9) S = ns + O(1) and T = nt + O(1).

Then, since |s| < 1 and |t| < 1 by assumption, we know that |S| ≤ n
and |T | ≤ n for all sufficiently large n. Therefore, by (5.7) and (5.8), as
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n −→ ∞ we have

D1 =
4
n2

(
1 + O(n−1)

)
[

n2

2

(
|S|
n

− 1
2

)2

+
n2

2

(
|T |
n

− 1
2

)2

− n2 + 2
12

]

= 2
(
|s| − 1

2

)2 + 2
(
|t| − 1

2

)2 − 1
3 + O(n−1),(5.10)

by (5.9).
The remaining sums. By Lemma 8, we can bound the remaining sums by

|B| + |C1| ≤
1
n5

n−1∑

k=1

8 |ΛX(0, 0, k)|
|1 − εk|2

+
2
n5

∑

1≤k,#<n
k "=#

4 |ΛX(0, k, ')|
|1 − εk| · |1 − ε$|

≤ 8(n + 1)
n4




n−1∑

k=1

1
|1 − εk|2

+
∑

1≤k,#<n
k "=#

1
|1 − εk| · |1 − ε$|





=
8(n + 1)

n4

(
n−1∑

k=1

1
|1 − εk|

)2

,

|C2| + |D2| ≤
2
n5

∑

1≤k,#<n
k "=#

2 |ΛX(k, 0, ')|
|1 − εk| · |1 − ε$|

+
4
n5

n−1∑

k=1

|ΛX(k, 0, k)|
|1 − εk|2

≤ 4(n + 1) 3
2

n4

(
n−1∑

k=1

1
|1 − εk|

)2

.

Therefore

|B + C1 + C2 + D2| ≤ (n + 1)
1
2 (|B| + |C1|) + (|C2| + |D2|)

≤ 12(n + 1) 3
2

n4

(
n−1∑

k=1

1
|1 − εk|

)2

= O
(
n− 1

2 (log n)2
)

as n −→ ∞,(5.11)

since
∑n−1

k=1
1

|1−εk| ≤ n log n (see [HJ88, p. 162], for example).

The result now follows by substituting the asymptotic forms (5.6), (5.10), and
(5.11) in (5.2). !

There is no loss of generality in Theorem 9 arising from the constraints |s| < 1 and
|t| < 1, since any sequence A satisfies Ar+1 = Ar for all r.

6. Asymptotic Merit Factor Calculation

In this section we apply Lemmas 3 and 4 to an m-sequence X , using Theorem 9
to evaluate the resulting asymptotic form. In this way we calculate the asymptotic
merit factor of N(X) and P (X).

We firstly note the following result, under which o(
√

n) elements of a length n
sequence can be changed by a bounded amount without altering the asymptotic
reciprocal merit factor:
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Proposition 10 ([SJP09, Proposition 1]). Let {A(n)} and {B(n)} be sets of
sequences, where each of A(n) and B(n) has length n. Suppose that, for each n, all
elements of A(n) and B(n) are bounded in magnitude by a constant independent
of n. Suppose further that, as n −→ ∞, the number of nonzero elements of B(n)
is o(

√
n) and that F (A(n)) = O(1) and E(A(n)) = Ω(n).1 Then, as n −→ ∞, the

elementwise sequence sums {A(n) + B(n)} satisfy

1
F (A(n) + B(n))

=
1

F (A(n))
(1 + o(1)).

We now prove the main results of the paper as Theorems 11 and 12.

Theorem 11. Let X be an m-sequence of length n = 2m − 1, and let r be a
real number. Then

lim
n−→∞

F ((N(X))er) = 3.

Proof. Let N(X) = (y0, y1, . . . , y2n−1) and write ρ := &rn'/n. By the defini-
tion of negaperiodic rotation,

[(N(X))er]j =

{
y(j+"2nr#) mod 2n for 0 ≤ j < 2n − &2nr'

−y(j+"2nr#) mod 2n for 2n − &2nr' ≤ j < 2n,

[(N(X))eρ]j =

{
y(j+2"nr#) mod 2n for 0 ≤ j < 2n − 2&nr'

−y(j+2"nr#) mod 2n for 2n − 2&nr' ≤ j < 2n.

For each n, either &2nr' = 2&nr', in which case the length 2n sequences (N(X))er
and (N(X))eρ are identical, or else &2nr' = 2&nr' + 1, in which case (N(X))er and
(N(X))eρ share a common subsequence of length 2n − 1. So by Proposition 10, it
is sufficient to show that limn−→∞ F ((N(X))eρ) = 3.

Let Z be the 2-decimation of X . By Lemma 3, as n −→ ∞ we have
1
n2

∑

|u|<2n

[C(N(X))eρ(u)]2

=
1
n2

∑

|u|<n

(
[CZr (u) + CZr+δ (u)]2 + [CZr ,Zr+δ(u) − CZr+δ,Zr+2δ (u) + O(1)]2

)
,

(6.1)

where δ = δ(n) := n+1
2n . Ignoring temporarily the term O(1), the six terms in the

expansion of the right hand side of (6.1) each take the form

1
n2

∑

|u|<n

CZr+iδ ,Zr+(i+k)δ (u)CZr+jδ ,Zr+(j+k)δ (u)

for some i, j, k ∈ {0, 1}. Furthermore, Zr+iδ is also an m-sequence, by Lemma 1 (i)
and (ii). We can therefore apply Theorem 9 with X = Zr+iδ and s(n) = kδ(n)
and t(n) = (j − i)δ(n) (noting that nδ(n) is integer for each n and that δ(n) =

1We use the notation o, O, and Ω to compare the growth rates of functions f(n) and g(n)
from N to R+ in the following standard way: f(n) = o(g(n)) means that f(n)/g(n) → 0 as n → ∞;
f(n) = O(g(n)) means that there is a constant c, independent of n, for which f(n) ≤ cg(n) for all
sufficiently large n; and f(n) = Ω(g(n)) means that g(n) = O(f(n)).
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1
2 + O(n−1)) to show that, as n −→ ∞, the terms in the expansion of the right
hand side of (6.1) are given by

1
n2

∑

|u|<n

CZr+iδ,Zr+(i+k)δ (u)CZr+jδ ,Zr+(j+k)δ (u)

= 1
3 + 2

(
|k|
2 − 1

2

)2
+ 2

(
|j−i|

2 − 1
2

)2
+ O

(
n− 1

2 (log n)2
)

.(6.2)

Since the right hand side of (6.2) is O(1) as n −→ ∞, by the Cauchy-Schwarz
inequality the additional contribution arising from the inclusion of the previously
ignored term O(1) in (6.1) is O(n− 1

2 ), which can be neglected. Using (6.2) to
evaluate the expansion of the right hand side of (6.1), we then find that

lim
n−→∞

1
(2n)2

∑

|u|<2n

[
C(N(X))eρ(u)

]2 =
4
3
,

and the required result follows from (2.1). !

Theorem 12. Let X be an m-sequence of length n = 2m − 1, and let r be a
real number. Then

lim
n−→∞

F ((P (X))r) = 3.

Proof. The proof is similar to that of Theorem 11. Write ρ := &rn'/n.
The length 4n sequences (P (X))r and (P (X))ρ share a common subsequence of
length at least 4n − 3, and so by Proposition 10 it is sufficient to show that
limn−→∞ F ((P (X))ρ) = 3.

Let Z be the 4-decimation of X . By Lemma 4, as n −→ ∞ we have
1
n2

∑

|u|<4n

[
C(P (X))ρ

(u)
]2

=
1
n2

3∑

k=0

∑

|u|<n

(
3∑

i=0

(−1)
ik(i+k+2)

2 CZr+iδ ,Zr+(i+k)δ (u) + O(1)

)2

,(6.3)

where δ = δ(n) := n+1
4n (since n ≡ 3 (mod 4) for all n > 1). Zr+iδ is an m-sequence,

by Lemma 1 (i) and (ii). We can therefore apply Theorem 9 with X = Zr+iδ and
s(n) = kδ(n) and t(n) = (j − i)δ(n), where i, j, k ∈ {0, 1, 2, 3}, to show that
1
n2

∑

|u|<n

CZr+iδ,Zr+(i+k)δ (u)CZr+jδ ,Zr+(j+k)δ (u)

= 1
3 + 2

(
|k|
4 − 1

2

)2
+ 2

(
|j−i|

4 − 1
2

)2
+ O

(
n− 1

2 (log n)2
)

(6.4)

as n −→ ∞. Expand the right hand side of (6.3) and substitute from (6.4), ne-
glecting the contribution of the term O(1) in (6.3) as in the proof of Theorem 11,
to give

lim
n−→∞

1
n2

∑

|u|<4n

[
C(P (X))ρ

(u)
]2

=
∑

0≤k,i,j≤3

(−1)
ik(i+k+2)+jk(j+k+2)

2

(
1
3 + 2

(
|k|
4 − 1

2

)2
+ 2

(
|j−i|

4 − 1
2

)2
)

.
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Direct evaluation of the sum over k, i, and j reveals that

lim
n−→∞

1
(4n)2

∑

|u|<4n

[
C(P (X))ρ

(u)
]2 =

4
3
,

and the required result follows from (2.1). !

7. Conclusion

Comparison of Theorems 11 and 12 with Theorem 2 shows that the graphical
property noted at the end of Section 4 for Legendre sequences also holds for m-
sequences. These results suggest the possibility of three general properties of odd-
length binary sequence families X :
(a) there is a constant c = c(X) for which

(7.1) lim
n−→∞

F ((N(X))̃r+c) = lim
n−→∞

F (Xr) for all r,

provided both limits exist.
(b) there is a constant d = d(X) for which

(7.2) lim
n−→∞

F ((P (X))r+d) = lim
n−→∞

F (Xr) for all r,

provided both limits exist.
(c)

(7.3) lim
n−→∞

F ((N(X))er) = lim
n−→∞

F ((P (X))r), for all r,

provided both limits exist.
However we now show numerically that at least one of these proposed properties,
namely (7.3), appears not to hold in general.

The Rudin-Shapiro sequence pair A(m), B(m) of length 2m is defined recursively
by {

A(m) := A(m−1); B(m−1),

B(m) := A(m−1);−B(m−1),

where A(0) = B(0) = (+). Littlewood calculated the asymptotic merit factor of
each sequence A(m) and B(m) of a Rudin-Shapiro pair to be 3 in 1968:

Theorem 13 ([Lit68]). Let A(m), B(m) be a Rudin-Shapiro pair of length n =
2m. Then

F (A(m)) = F (B(m)) =
3

1 −
(
− 1

2

)m .

Remove the initial element of the sequence A(m) to produce a sequence A1
(m) of

odd length 2m − 1 (whose asymptotic merit factor remains 3, by Proposition 10).
It appears from the data shown in Figure 2 that

(7.4) F (N(A1
(m))) , 3 and F (P (A1

(m))) , 1.5 for large m,

which in turn implies that (7.3) is false for X = A(m)
1 and r = 0.

We propose the following open problems:
(1) Can the apparent property (7.4) be proved?
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
m

1

2

3

4

F

Periodic
construction

Negaperiodic
construction

Figure 2. Variation of merit factor of N(A(m)
1 ) and P (A(m)

1 )
with m, where A(m)

1 is the Rudin-Shapiro sequence A(m) of
length 2m with the initial element removed.

(2) For r *= 0, how does the asymptotic value of F ((A(m)
1 )r), F ((N(A(m)

1 ))er), and
F ((P (A(m)

1 ))r) behave?
(3) For which odd-length binary sequence families X do properties (7.1), (7.2), and

(7.3) hold?
In closing, we remark that the asymptotic value of F ((N(X))er) and F ((P (X))r)

can be calculated in the case that X is a Jacobi sequence or modified Jacobi se-
quence of length pq, by following the method of [JJH91] and deriving the corre-
sponding version of Theorem 9 for such a sequence. Under the same conditions on
the relative growth rate of the primes p and q as in [JJH91, Eq. 5.11], the resulting
asymptotic merit factor graphs are identical to the right graph of Figure 1. The
special cases r = 0 and r = 1

2 of this result were proved for p ≡ q ≡ 1 (mod 4) by
Xiong and Hall [XH08, Thm. 5.2].
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